Forum rss-feed

Forum

Pico: Custom Fingerer fingerings

Most Recent

written by: NothanUmber

My christmas present wish from John:
Please consider implementing "muted" finger entries: These only set the base pitch for polyphony+modifiers but don't create a sound themselves. This way you can make the fingerings above polyphonic (this is quite similar to a proposal I already made some months ago).

That's how the fingerings might look then (*not* working with EigenD 2.0.66 (unless you have some very special music project in mind that involves inharmonic bordun notes ;) ), if you want a working fingering take the monophonic one from posting #2):

[alternative 998]
finger 1 = open M +0.0
finger 2 = 2,6 M +7.0
finger 3 = 2,6 2,7 M +14.0
finger 4 = 2,7 M +21.0
finger 5 = 2,6 2,7 2,8 M +28.0
finger 6 = 2,8 M -7.0
finger 7 = 2,7 2,8 M -14.0
finger 8 = 2,6 2,8 M -21.0

modifier 1 = 2,5 * +1.0
modifier 2 = 1,5 * -1.0

polyphony 1 = 1,1 * +1.0
polyphony 2 = 1,2 * +2.0
polyphony 3 = 1,3 * +3.0
polyphony 4 = 1,4 * +4.0
polyphony 5 = 2,1 * +5.0
polyphony 6 = 2,2 * +6.0
polyphony 7 = 2,3 * +7.0
polyphony 8 = 2,4 * +8.0

polyphony 9 = 1,6 * -1.0
polyphony 10 = 1,7 * -2.0
polyphony 11 = 1,8 * -3.0

[alternative 999]
finger 1 = open M +0.0
finger 2 = 2,6 M +8.0
finger 3 = 2,6 2,7 M +16.0
finger 4 = 2,7 M +24.0
finger 5 = 2,6 2,7 2,8 M +32.0
finger 6 = 2,8 M -8.0
finger 7 = 2,7 2,8 M -16.0
finger 8 = 2,6 2,8 M -24.0

modifier 1 = 2,5 * +1.0
modifier 2 = 1,5 * -1.0

polyphony 1 = 1,1 * +1.0
polyphony 2 = 1,2 * +2.0
polyphony 3 = 1,3 * +3.0
polyphony 4 = 1,4 * +4.0
polyphony 5 = 2,1 * +5.0
polyphony 6 = 2,2 * +6.0
polyphony 7 = 2,3 * +7.0
polyphony 8 = 2,4 * +8.0

polyphony 9 = 1,6 * -2.0
polyphony 10 = 1,7 * -4.0
polyphony 11 = 1,8 * -6.0

written by: NothanUmber

Wed, 3 Oct 2012 19:14:32 +0100 BST

Hi,
here a fingering that I found quite interesting for Pico (originally I had another concept for the modifiers in mind, but modifiers that require to press several keys don't work as I though they would atm., so it is working with single modifier keys now.)
Concept: Use a 7 tone scale (e.g. major etc.), the 8 keys in the upper half of the Pico work as in the standard setup (just monophonic - didn't get polyphony without a "base note" to work with the current Fingerer).
The keys in the lower half act as modifiers. The ones on the left transpose up by one/two octaves and down by 1 octave. (So you can play in 4 octaves) The modifiers on the right correspond to the octave modifier on the left - just one semitone higher, so you can play out of scale notes.
Have fun!

NothanUmber

*edit*: in retrospective I'd consider this approach a *hack", I'd strongly suggest to use the setups described in the next postings (leave that one here for reference, in the case somebody needs this *hack* in order to achieve something that is not possible otherwise)
[delete]
finger 1 = 1,1 * +1.0
finger 2 = 1,2 * +2.0
finger 3 = 1,3 * +3.0
finger 4 = 1,4 * +4.0
finger 5 = 2,1 * +5.0
finger 6 = 2,2 * +6.0
finger 7 = 2,3 * +7.0
finger 8 = 2,4 * +8.0

modifier 1 = 2,6 * +12.0
modifier 2 = 2,7 * +24.0
modifier 3 = 2,8 * -12.0

modifier 4 = 1,5 * +1.0
modifier 5 = 1,6 * +13.0
modifier 6 = 1,7 * +25.0
modifier 7 = 1,8 * -11.0


written by: NothanUmber

Wed, 3 Oct 2012 20:33:23 +0100 BST

After getting a better understanding of the concept, here another variant that comes quite close to my original idea - one big advantage over the old one is that it should work with all kinds of scales.
Set the "maximum" parameter of the Fingerer agent to 0, otherwise it will be difficult to play without undesired pitch bends.
Concept:
* The above 8 keys work as in the standard setup (monophonic).
* Keys 2,5 and 1,5 add/subtract a semitone, so you can play out of scale notes
* Keys 2,6-2,8 encode the octave(*) (8*7/8*8(alternative 2) key combos => > 5 chromatic and > 9 diatonic octaves)
* Keys 1,6-1,8 add some harmonics

(*) more precisely: the modifiers transpose by n*7 (n*8 for alternative 2) scale steps, so it's an octave for 7 note scales (for alternative 1). The reason behind transposing multiples of 7/8:
* for 7 note scales each note in the octave has a distinct key, so it's easier to jump to a note in a specific octave intuitively without "calculating" (for 7 note steps in alternative 1)
* for 12 note scales (chromatic) each note in the octave at least has a distinct vertical position (for 8 note steps in alternative 2)

*edit+edit4*: added remaining transposition mode keys (the additional mode keys work - it's just that the clarinet oscillator can't play the entire range)

*edit 2* added a second variant that might be more suited for the chromatic scale because of symmetry (for "alternative" each note per octave has a dedicated key for 7 tone (diatonic) scales, while the pattern for chromatic scales is not repeating (in the given range).
In "alternative 2" the notes per octave at least have a distinct vertical position - the horizontal position alters between two adjacent octaves).
"alternative 2" might also be more appealing for Alpha/Tau players because it's more similar to what they are used to.
*edit 3* swapped modifiers 2,6+2,7 and 2,7 for better playability

[alternative]
finger 1 = 1,1 * +1.0
finger 2 = 1,2 * +2.0
finger 3 = 1,3 * +3.0
finger 4 = 1,4 * +4.0
finger 5 = 2,1 * +5.0
finger 6 = 2,2 * +6.0
finger 7 = 2,3 * +7.0
finger 8 = 2,4 * +8.0

finger 9 = 1,1 2,6 * +8.0
finger 10 = 1,2 2,6 * +9.0
finger 11 = 1,3 2,6 * +10.0
finger 12 = 1,4 2,6 * +11.0
finger 13 = 2,1 2,6 * +12.0
finger 14 = 2,2 2,6 * +13.0
finger 15 = 2,3 2,6 * +14.0
finger 16 = 2,4 2,6 * +15.0

finger 17 = 1,1 2,6 2,7 * +15.0
finger 18 = 1,2 2,6 2,7 * +16.0
finger 19 = 1,3 2,6 2,7 * +17.0
finger 20 = 1,4 2,6 2,7 * +18.0
finger 21 = 2,1 2,6 2,7 * +19.0
finger 22 = 2,2 2,6 2,7 * +20.0
finger 23 = 2,3 2,6 2,7 * +21.0
finger 24 = 2,4 2,6 2,7 * +22.0

finger 25 = 1,1 2,7 * +22.0
finger 26 = 1,2 2,7 * +23.0
finger 27 = 1,3 2,7 * +24.0
finger 28 = 1,4 2,7 * +25.0
finger 29 = 2,1 2,7 * +26.0
finger 30 = 2,2 2,7 * +27.0
finger 31 = 2,3 2,7 * +28.0
finger 32 = 2,4 2,7 * +29.0

finger 33 = 1,1 2,6 2,7 2,8 * +29.0
finger 34 = 1,2 2,6 2,7 2,8 * +30.0
finger 35 = 1,3 2,6 2,7 2,8 * +31.0
finger 36 = 1,4 2,6 2,7 2,8 * +32.0
finger 37 = 2,1 2,6 2,7 2,8 * +33.0
finger 38 = 2,2 2,6 2,7 2,8 * +34.0
finger 39 = 2,3 2,6 2,7 2,8 * +35.0
finger 40 = 2,4 2,6 2,7 2,8 * +36.0

finger 41 = 1,1 2,8 * -6.0
finger 42 = 1,2 2,8 * -5.0
finger 43 = 1,3 2,8 * -4.0
finger 44 = 1,4 2,8 * -3.0
finger 45 = 2,1 2,8 * -2.0
finger 46 = 2,2 2,8 * -1.0
finger 47 = 2,3 2,8 * +0.0
finger 48 = 2,4 2,8 * +1.0

finger 49 = 1,1 2,7 2,8 * -13.0
finger 50 = 1,2 2,7 2,8 * -12.0
finger 51 = 1,3 2,7 2,8 * -11.0
finger 52 = 1,4 2,7 2,8 * -10.0
finger 53 = 2,1 2,7 2,8 * -9.0
finger 54 = 2,2 2,7 2,8 * -8.0
finger 55 = 2,3 2,7 2,8 * -7.0
finger 56 = 2,4 2,7 2,8 * -6.0

finger 57 = 1,1 2,6 2,8 * -20.0
finger 58 = 1,2 2,6 2,8 * -19.0
finger 59 = 1,3 2,6 2,8 * -18.0
finger 60 = 1,4 2,6 2,8 * -17.0
finger 61 = 2,1 2,6 2,8 * -16.0
finger 62 = 2,2 2,6 2,8 * -15.0
finger 63 = 2,3 2,6 2,8 * -14.0
finger 64 = 2,4 2,6 2,8 * -13.0

modifier 1 = 2,5 * +1.0
modifier 2 = 1,5 * -1.0

polyphony 1 = 1,6 * +3.0
polyphony 2 = 1,7 * +5.0
polyphony 3 = 1,8 * +7.0

[alternative 2]
finger 1 = 1,1 * +1.0
finger 2 = 1,2 * +2.0
finger 3 = 1,3 * +3.0
finger 4 = 1,4 * +4.0
finger 5 = 2,1 * +5.0
finger 6 = 2,2 * +6.0
finger 7 = 2,3 * +7.0
finger 8 = 2,4 * +8.0

finger 9 = 1,1 2,6 * +9.0
finger 10 = 1,2 2,6 * +10.0
finger 11 = 1,3 2,6 * +11.0
finger 12 = 1,4 2,6 * +12.0
finger 13 = 2,1 2,6 * +13.0
finger 14 = 2,2 2,6 * +14.0
finger 15 = 2,3 2,6 * +15.0
finger 16 = 2,4 2,6 * +16.0

finger 17 = 1,1 2,6 2,7 * +17.0
finger 18 = 1,2 2,6 2,7 * +18.0
finger 19 = 1,3 2,6 2,7 * +19.0
finger 20 = 1,4 2,6 2,7 * +20.0
finger 21 = 2,1 2,6 2,7 * +21.0
finger 22 = 2,2 2,6 2,7 * +22.0
finger 23 = 2,3 2,6 2,7 * +23.0
finger 24 = 2,4 2,6 2,7 * +24.0

finger 25 = 1,1 2,7 * +25.0
finger 26 = 1,2 2,7 * +26.0
finger 27 = 1,3 2,7 * +27.0
finger 28 = 1,4 2,7 * +28.0
finger 29 = 2,1 2,7 * +29.0
finger 30 = 2,2 2,7 * +30.0
finger 31 = 2,3 2,7 * +31.0
finger 32 = 2,4 2,7 * +32.0

finger 33 = 1,1 2,6 2,7 2,8 * +33.0
finger 34 = 1,2 2,6 2,7 2,8 * +34.0
finger 35 = 1,3 2,6 2,7 2,8 * +35.0
finger 36 = 1,4 2,6 2,7 2,8 * +36.0
finger 37 = 2,1 2,6 2,7 2,8 * +37.0
finger 38 = 2,2 2,6 2,7 2,8 * +38.0
finger 39 = 2,3 2,6 2,7 2,8 * +39.0
finger 40 = 2,4 2,6 2,7 2,8 * +40.0

finger 41 = 1,1 2,8 * -7.0
finger 42 = 1,2 2,8 * -6.0
finger 43 = 1,3 2,8 * -5.0
finger 44 = 1,4 2,8 * -4.0
finger 45 = 2,1 2,8 * -3.0
finger 46 = 2,2 2,8 * -2.0
finger 47 = 2,3 2,8 * -1.0
finger 48 = 2,4 2,8 * +0.0

finger 49 = 1,1 2,7 2,8 * -15.0
finger 50 = 1,2 2,7 2,8 * -14.0
finger 51 = 1,3 2,7 2,8 * -13.0
finger 52 = 1,4 2,7 2,8 * -12.0
finger 53 = 2,1 2,7 2,8 * -11.0
finger 54 = 2,2 2,7 2,8 * -10.0
finger 55 = 2,3 2,7 2,8 * -9.0
finger 56 = 2,4 2,7 2,8 * -8.0

finger 57 = 1,1 2,6 2,8 * -23.0
finger 58 = 1,2 2,6 2,8 * -22.0
finger 59 = 1,3 2,6 2,8 * -21.0
finger 60 = 1,4 2,6 2,8 * -20.0
finger 61 = 2,1 2,6 2,8 * -19.0
finger 62 = 2,2 2,6 2,8 * -18.0
finger 63 = 2,3 2,6 2,8 * -17.0
finger 64 = 2,4 2,6 2,8 * -16.0

modifier 1 = 2,5 * +1.0
modifier 2 = 1,5 * -1.0

polyphony 1 = 1,6 * +3.0
polyphony 2 = 1,7 * +5.0
polyphony 3 = 1,8 * +7.0


written by: NothanUmber

Thu, 4 Oct 2012 06:51:10 +0100 BST

My christmas present wish from John:
Please consider implementing "muted" finger entries: These only set the base pitch for polyphony+modifiers but don't create a sound themselves. This way you can make the fingerings above polyphonic (this is quite similar to a proposal I already made some months ago).

That's how the fingerings might look then (*not* working with EigenD 2.0.66 (unless you have some very special music project in mind that involves inharmonic bordun notes ;) ), if you want a working fingering take the monophonic one from posting #2):

[alternative 998]
finger 1 = open M +0.0
finger 2 = 2,6 M +7.0
finger 3 = 2,6 2,7 M +14.0
finger 4 = 2,7 M +21.0
finger 5 = 2,6 2,7 2,8 M +28.0
finger 6 = 2,8 M -7.0
finger 7 = 2,7 2,8 M -14.0
finger 8 = 2,6 2,8 M -21.0

modifier 1 = 2,5 * +1.0
modifier 2 = 1,5 * -1.0

polyphony 1 = 1,1 * +1.0
polyphony 2 = 1,2 * +2.0
polyphony 3 = 1,3 * +3.0
polyphony 4 = 1,4 * +4.0
polyphony 5 = 2,1 * +5.0
polyphony 6 = 2,2 * +6.0
polyphony 7 = 2,3 * +7.0
polyphony 8 = 2,4 * +8.0

polyphony 9 = 1,6 * -1.0
polyphony 10 = 1,7 * -2.0
polyphony 11 = 1,8 * -3.0

[alternative 999]
finger 1 = open M +0.0
finger 2 = 2,6 M +8.0
finger 3 = 2,6 2,7 M +16.0
finger 4 = 2,7 M +24.0
finger 5 = 2,6 2,7 2,8 M +32.0
finger 6 = 2,8 M -8.0
finger 7 = 2,7 2,8 M -16.0
finger 8 = 2,6 2,8 M -24.0

modifier 1 = 2,5 * +1.0
modifier 2 = 1,5 * -1.0

polyphony 1 = 1,1 * +1.0
polyphony 2 = 1,2 * +2.0
polyphony 3 = 1,3 * +3.0
polyphony 4 = 1,4 * +4.0
polyphony 5 = 2,1 * +5.0
polyphony 6 = 2,2 * +6.0
polyphony 7 = 2,3 * +7.0
polyphony 8 = 2,4 * +8.0

polyphony 9 = 1,6 * -2.0
polyphony 10 = 1,7 * -4.0
polyphony 11 = 1,8 * -6.0



Please log in to join the discussions