After getting a better understanding of the concept, here another variant that comes quite close to my original idea - one big advantage over the old one is that it should work with all kinds of scales.
Set the "maximum" parameter of the Fingerer agent to 0, otherwise it will be difficult to play without undesired pitch bends.
Concept:
* The above 8 keys work as in the standard setup (monophonic).
* Keys 2,5 and 1,5 add/subtract a semitone, so you can play out of scale notes
* Keys 2,6-2,8 encode the octave(*) (8*7/8*8(alternative 2) key combos => > 5 chromatic and > 9 diatonic octaves)
* Keys 1,6-1,8 add some harmonics
(*) more precisely: the modifiers transpose by n*7 (n*8 for alternative 2) scale steps, so it's an octave for 7 note scales (for alternative 1). The reason behind transposing multiples of 7/8:
* for 7 note scales each note in the octave has a distinct key, so it's easier to jump to a note in a specific octave intuitively without "calculating" (for 7 note steps in alternative 1)
* for 12 note scales (chromatic) each note in the octave at least has a distinct vertical position (for 8 note steps in alternative 2)
*edit+edit4*: added remaining transposition mode keys (the additional mode keys work - it's just that the clarinet oscillator can't play the entire range)
*edit 2* added a second variant that might be more suited for the chromatic scale because of symmetry (for "alternative" each note per octave has a dedicated key for 7 tone (diatonic) scales, while the pattern for chromatic scales is not repeating (in the given range).
In "alternative 2" the notes per octave at least have a distinct vertical position - the horizontal position alters between two adjacent octaves).
"alternative 2" might also be more appealing for Alpha/Tau players because it's more similar to what they are used to.
*edit 3* swapped modifiers 2,6+2,7 and 2,7 for better playability
[alternative]
finger 1 = 1,1 * +1.0
finger 2 = 1,2 * +2.0
finger 3 = 1,3 * +3.0
finger 4 = 1,4 * +4.0
finger 5 = 2,1 * +5.0
finger 6 = 2,2 * +6.0
finger 7 = 2,3 * +7.0
finger 8 = 2,4 * +8.0
finger 9 = 1,1 2,6 * +8.0
finger 10 = 1,2 2,6 * +9.0
finger 11 = 1,3 2,6 * +10.0
finger 12 = 1,4 2,6 * +11.0
finger 13 = 2,1 2,6 * +12.0
finger 14 = 2,2 2,6 * +13.0
finger 15 = 2,3 2,6 * +14.0
finger 16 = 2,4 2,6 * +15.0
finger 17 = 1,1 2,6 2,7 * +15.0
finger 18 = 1,2 2,6 2,7 * +16.0
finger 19 = 1,3 2,6 2,7 * +17.0
finger 20 = 1,4 2,6 2,7 * +18.0
finger 21 = 2,1 2,6 2,7 * +19.0
finger 22 = 2,2 2,6 2,7 * +20.0
finger 23 = 2,3 2,6 2,7 * +21.0
finger 24 = 2,4 2,6 2,7 * +22.0
finger 25 = 1,1 2,7 * +22.0
finger 26 = 1,2 2,7 * +23.0
finger 27 = 1,3 2,7 * +24.0
finger 28 = 1,4 2,7 * +25.0
finger 29 = 2,1 2,7 * +26.0
finger 30 = 2,2 2,7 * +27.0
finger 31 = 2,3 2,7 * +28.0
finger 32 = 2,4 2,7 * +29.0
finger 33 = 1,1 2,6 2,7 2,8 * +29.0
finger 34 = 1,2 2,6 2,7 2,8 * +30.0
finger 35 = 1,3 2,6 2,7 2,8 * +31.0
finger 36 = 1,4 2,6 2,7 2,8 * +32.0
finger 37 = 2,1 2,6 2,7 2,8 * +33.0
finger 38 = 2,2 2,6 2,7 2,8 * +34.0
finger 39 = 2,3 2,6 2,7 2,8 * +35.0
finger 40 = 2,4 2,6 2,7 2,8 * +36.0
finger 41 = 1,1 2,8 * -6.0
finger 42 = 1,2 2,8 * -5.0
finger 43 = 1,3 2,8 * -4.0
finger 44 = 1,4 2,8 * -3.0
finger 45 = 2,1 2,8 * -2.0
finger 46 = 2,2 2,8 * -1.0
finger 47 = 2,3 2,8 * +0.0
finger 48 = 2,4 2,8 * +1.0
finger 49 = 1,1 2,7 2,8 * -13.0
finger 50 = 1,2 2,7 2,8 * -12.0
finger 51 = 1,3 2,7 2,8 * -11.0
finger 52 = 1,4 2,7 2,8 * -10.0
finger 53 = 2,1 2,7 2,8 * -9.0
finger 54 = 2,2 2,7 2,8 * -8.0
finger 55 = 2,3 2,7 2,8 * -7.0
finger 56 = 2,4 2,7 2,8 * -6.0
finger 57 = 1,1 2,6 2,8 * -20.0
finger 58 = 1,2 2,6 2,8 * -19.0
finger 59 = 1,3 2,6 2,8 * -18.0
finger 60 = 1,4 2,6 2,8 * -17.0
finger 61 = 2,1 2,6 2,8 * -16.0
finger 62 = 2,2 2,6 2,8 * -15.0
finger 63 = 2,3 2,6 2,8 * -14.0
finger 64 = 2,4 2,6 2,8 * -13.0
modifier 1 = 2,5 * +1.0
modifier 2 = 1,5 * -1.0
polyphony 1 = 1,6 * +3.0
polyphony 2 = 1,7 * +5.0
polyphony 3 = 1,8 * +7.0
[alternative 2]
finger 1 = 1,1 * +1.0
finger 2 = 1,2 * +2.0
finger 3 = 1,3 * +3.0
finger 4 = 1,4 * +4.0
finger 5 = 2,1 * +5.0
finger 6 = 2,2 * +6.0
finger 7 = 2,3 * +7.0
finger 8 = 2,4 * +8.0
finger 9 = 1,1 2,6 * +9.0
finger 10 = 1,2 2,6 * +10.0
finger 11 = 1,3 2,6 * +11.0
finger 12 = 1,4 2,6 * +12.0
finger 13 = 2,1 2,6 * +13.0
finger 14 = 2,2 2,6 * +14.0
finger 15 = 2,3 2,6 * +15.0
finger 16 = 2,4 2,6 * +16.0
finger 17 = 1,1 2,6 2,7 * +17.0
finger 18 = 1,2 2,6 2,7 * +18.0
finger 19 = 1,3 2,6 2,7 * +19.0
finger 20 = 1,4 2,6 2,7 * +20.0
finger 21 = 2,1 2,6 2,7 * +21.0
finger 22 = 2,2 2,6 2,7 * +22.0
finger 23 = 2,3 2,6 2,7 * +23.0
finger 24 = 2,4 2,6 2,7 * +24.0
finger 25 = 1,1 2,7 * +25.0
finger 26 = 1,2 2,7 * +26.0
finger 27 = 1,3 2,7 * +27.0
finger 28 = 1,4 2,7 * +28.0
finger 29 = 2,1 2,7 * +29.0
finger 30 = 2,2 2,7 * +30.0
finger 31 = 2,3 2,7 * +31.0
finger 32 = 2,4 2,7 * +32.0
finger 33 = 1,1 2,6 2,7 2,8 * +33.0
finger 34 = 1,2 2,6 2,7 2,8 * +34.0
finger 35 = 1,3 2,6 2,7 2,8 * +35.0
finger 36 = 1,4 2,6 2,7 2,8 * +36.0
finger 37 = 2,1 2,6 2,7 2,8 * +37.0
finger 38 = 2,2 2,6 2,7 2,8 * +38.0
finger 39 = 2,3 2,6 2,7 2,8 * +39.0
finger 40 = 2,4 2,6 2,7 2,8 * +40.0
finger 41 = 1,1 2,8 * -7.0
finger 42 = 1,2 2,8 * -6.0
finger 43 = 1,3 2,8 * -5.0
finger 44 = 1,4 2,8 * -4.0
finger 45 = 2,1 2,8 * -3.0
finger 46 = 2,2 2,8 * -2.0
finger 47 = 2,3 2,8 * -1.0
finger 48 = 2,4 2,8 * +0.0
finger 49 = 1,1 2,7 2,8 * -15.0
finger 50 = 1,2 2,7 2,8 * -14.0
finger 51 = 1,3 2,7 2,8 * -13.0
finger 52 = 1,4 2,7 2,8 * -12.0
finger 53 = 2,1 2,7 2,8 * -11.0
finger 54 = 2,2 2,7 2,8 * -10.0
finger 55 = 2,3 2,7 2,8 * -9.0
finger 56 = 2,4 2,7 2,8 * -8.0
finger 57 = 1,1 2,6 2,8 * -23.0
finger 58 = 1,2 2,6 2,8 * -22.0
finger 59 = 1,3 2,6 2,8 * -21.0
finger 60 = 1,4 2,6 2,8 * -20.0
finger 61 = 2,1 2,6 2,8 * -19.0
finger 62 = 2,2 2,6 2,8 * -18.0
finger 63 = 2,3 2,6 2,8 * -17.0
finger 64 = 2,4 2,6 2,8 * -16.0
modifier 1 = 2,5 * +1.0
modifier 2 = 1,5 * -1.0
polyphony 1 = 1,6 * +3.0
polyphony 2 = 1,7 * +5.0
polyphony 3 = 1,8 * +7.0